- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hovden, Robert (2)
-
Liu, Yu (2)
-
Lu, Wenjian (2)
-
Schnitzer, Noah (2)
-
Sun, Kai (2)
-
Sun, Yuping (2)
-
Sung, Suk Hyun (2)
-
Agarwal, Nishkarsh (1)
-
Brintlinger, Todd H. (1)
-
Chiang, Tony (1)
-
Deotare, Parag B. (1)
-
El Baggari, Ismail (1)
-
El_Baggari, Ismail (1)
-
Gim, Jiseok (1)
-
Goh, Yin Min (1)
-
Heron, John T (1)
-
Heron, John T. (1)
-
Kezer, Patrick (1)
-
Kourkoutis, Lena F (1)
-
Kourkoutis, Lena F. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Charge density waves are emergent quantum states that spontaneously reduce crystal symmetry, drive metal-insulator transitions, and precede superconductivity. In low-dimensions, distinct quantum states arise, however, thermal fluctuations and external disorder destroy long-range order. Here we stabilize ordered two-dimensional (2D) charge density waves through endotaxial synthesis of confined monolayers of 1T-TaS2. Specifically, an ordered incommensurate charge density wave (oIC-CDW) is realized in 2D with dramatically enhanced amplitude and resistivity. By enhancing CDW order, the hexatic nature of charge density waves becomes observable. Upon heating via in-situ TEM, the CDW continuously melts in a reversible hexatic process wherein topological defects form in the charge density wave. From these results, new regimes of the CDW phase diagram for 1T-TaS2are derived and consistent with the predicted emergence of vestigial quantum order.more » « less
-
Sung, Suk Hyun; Schnitzer, Noah; Novakov, Steve; El Baggari, Ismail; Luo, Xiangpeng; Gim, Jiseok; Vu, Nguyen M.; Li, Zidong; Brintlinger, Todd H.; Liu, Yu; et al (, Nature Communications)Abstract Compelling evidence suggests distinct correlated electron behavior may exist only in clean 2D materials such as 1T-TaS 2 . Unfortunately, experiment and theory suggest that extrinsic disorder in free standing 2D layers disrupts correlation-driven quantum behavior. Here we demonstrate a route to realizing fragile 2D quantum states through endotaxial polytype engineering of van der Waals materials. The true isolation of 2D charge density waves (CDWs) between metallic layers stabilizes commensurate long-range order and lifts the coupling between neighboring CDW layers to restore mirror symmetries via interlayer CDW twinning. The twinned-commensurate charge density wave (tC-CDW) reported herein has a single metal–insulator phase transition at ~350 K as measured structurally and electronically. Fast in-situ transmission electron microscopy and scanned nanobeam diffraction map the formation of tC-CDWs. This work introduces endotaxial polytype engineering of van der Waals materials to access latent 2D ground states distinct from conventional 2D fabrication.more » « less
An official website of the United States government
